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A SOLID BODY 

A method for constructing control moments for application to a solid body rotat- 

ing about a fixed point [l] is proposed. The effect of these moments is to stabi- 
lize an axis rigidly attached to the solid body with respect to some other axis 
passing through the fixed point and performing a specified motion. The problem 

of stabilization of the rigidly attached axis with respect to a stationary axis pas- 
sing through a fixed point is considered in the case of a girostat. 

1. Let us consider a solid body with a fixed point 0 which coincides with the body 
center of mass. We denote by S a vector in the absolute system of coordinates oxyz; 
by H a vector rigidly attached to the solid body ; by oxyz a system of coordinates 

whose axes coincide with the principal central axes of the body ellipsoid of inertia, and 
by S, and H, the unit vectors of vectors S and H. Vector S is assumed to rotate 

about point o at some instantaneous velocity Oa (i). We use the notation 

a, = cos (S,, Lx), a.2 = cos (S,, y), a3 = cos (S,, 2) 

fh = ~0s (Ho, 4, Bz = ~0s (Ho, Y>, f&, = cos (H,, z) 

We write the equations of motion in the form of Euler’s dynamic equation 

80 + co x 00 = M (1.1) 

where o is the vector of instantaneous angular velocity of the body, 8 is the tensor ofiner- 
tia ofthat body about the fixed point o, and l’vl is the control moment. Vector S, satisfies 

the kinematic relation 
so’ = so x (0 - 0s) (1.2) 

Let us consider the problem of determining a control moment M whose action on the 

body would force it to approach asymptotically a motion such that vector H attached 
to the body assumed the direction of the mobile vector S , and to investigate the stability 
of such motion. 

Let us consider moment M analogous to that considered in [l] defined by 

M=p++co,‘+q,x@~+h(H, x @a) + l/% grad,,U, h = cona > o ( 1.3) 

u = ai (c$ - pi)%. ci=const>O (1.4) 
trl 

where gradoli u indicates that the gradient operation is carried out with respect to com- 
ponents Ui (i = 1, 2, 3). The equations of motion (1.1) - ( 1.3) admit the following 
particular solution 

o = o,, f AH,, H, = S, (1.5) 

where p is some moment which vanishes in the case of motion (1.5). 
Let us investigate the stability of solution (I. 5). We form the equations of perturbed 
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motion, using for the variations of variables the following notation: 

p - 3Lh = PI, 
at-_PBOi r= fii 

q - qo - ?& - ql, r - ro - hf& = r,, (1.6) 
(i = 1, 2, 3) 

We have Ap,’ = h (Bpzr,- C&qJ + Bq,r, - Cr,q, + (B - c)qlrl + (1.7) 

ah -I- f-h (1 2 3) 
6,’ = &rl - Bsq1 + k (8&b - fv3) + %r, - 6341 (1 2 3) (I* 8, 

where the symbol ( 123) shows that the two subsequent equations are obtained from (I. 7) 
and (1.8) by cyclic permutation. 

Let us consider function 

2V = Ap,2 + Bqla + Crla - 2h (ApI& -k Bq& f cr161) + 

05 (&2 + &a2 + b21 
(1.9) 

for 
a>h%, ml = max {A, B, C} (1.10) 

Function (1.9) is a positive definite function of variations of the system variables. Let 
us formulate the total derivative of function (1.9) with respect to time on the basis of 
equations of perturbed motion (1.7),( 1.8) and assume 

111 = -KPx - liu - 3L (B + 01 (&ql - BzrJ - (Bqorl - (1.11) 

CroqI) 

IL2 = -0, - [K - li rA + c)l (f&r1 - fbpd - (kdh - 

~4PlTl) 
p3 = -Krl - fK - 3L (A + B)l (f&p, - f&s;) - (AP~PI - 

Bq,p,), K = a/h > CJ 

We obtain 
v’ = --K [(p, - h6J2 + (ql - M&)s + (rr - Wal (1.12) 

Function (1.12) is a constant-sign negative function of variables pl, qr, r,, 6,, 6, 
and 6,, and the manifold E of points at which v’ = 0 is of the form 

Pl = h8,, 41 = h&h r, = I& (1.13) 

For parameters defined by (1.13) the equations of motion (1.8) are satisfied identically 
and Eqs. (1.7) assume the form 

h (B - C)B,6, + (K - AC) /3&j, - (K - AB)f@, = 0 (1 2 3) fl.14) 

Note that when et (i = 1, 2, 3) is determined with the use of one of the equations 
of system (1.14) and the result substituted into another, the third of these equations is 

obtained, hence one of the equations of that system can be excluded from the analysis. 
From the first of Eqs. (1.14) we determine &and from the second 6,. The substitution 
of these into formula 

612 + 6sa + 6s2 i 2 (PA f P&a + 83%) = 0 (1.15) 

yields for 6, the following equation: 

f (6,) = (K - W2 Br%A2 + (K - hC)2f3,2&3A82 + 2 (K - 
hC) fIi2A, + 2 (K - W BaaA + 6, + 203 = 0 

(1.16) 

AI-l=I(K--hA) & - h (A - C) SJ, A2-’ = [(K - hB)&-h (B - C) *s] 



Function f (6,) changes its sign along segment [-I - fist 1 - /3J . 
We denote the root of Eq. (1.16) by I, and substituting the latter into Eqs. (1.14), we 

determine 6, = 1, and 6s = I?,. After this the manifold (1.13) will not contain any 
other complete motions, except the unperturbed motion for which 

p1 = q1 = 7-l = 0, 6, = 6, = 6, = 0 (1.17) 

provided the initial perturbations belong to region 

pro2 + qio2 + F1a2 < k212, 6,s2 + 6,s2 + 6s02 < z2, z2 = zr2 + (I. 18) 

&2 + zs2 

Thus, when equalities (1.11) are satisfied, the unperturbed motion (1.17) is asymptotic- 
ally stable for all initial perturbations from region (1.18) [2]. 

Theorem 1. If initial perturbations belong to region (1.18), then with condition 
(1.10) and equalities (1.11) satisfied, the solid body subjected to the action of moment 

M=~+80~‘+o~x80+h(H~x80)+~/~graQ~U (1.19) 

either performs motion 
o=XHo+oo, H,, = S,, (1.20) 

or tends asymptotically to such motion ; according to Liapunov, motion (1.20) is stable. 

Corollary 1. If vector H lies on one of the semiaxes of the body ellipsoid of 

inertia and the number K is determined in conformity with the inequality 

K -?..rm 
h(ml__nz, >2, mB = min{A, By C) (1.21) 

the motion defined by (1.20) is asymptotically stable for all initial perturbations from 
the region 

pio2 + 4i02 + rio2 < 4k27 6,02 + 6,02 -k b32 -=c 4 (1.22) 

If vector A lies on one of the semiaxes of the body ellipsoid of inertia and the term 

h (H, X 00) is absent from formula (1.19) for the moment, then, as shown by Zubov 

[l], the motion (1.20), for certain conditions imposed on moment p, 1s conditionally sta- 
ble by Liapunov’s definition. 

Now, let S be a fixed vector in the absolute system of coordinates oxyi!. 

C or o 11 a r y 2 . If the initial perturbations belong to region (1.18) and condition 

(1.10) and equalities (1.11) (p,, = q,, = F. = 0) are satisfied, the solid body subjec- 

ted to the action of moment 

M = p + IL (Ho x 00) + 1/2 gradzi U (1.23) 

either performs motion 
o = AH,, Ho = So (1.24) 

or tends asymptotically to such motion and, according to Liapunov,( 1.24) is asymptotic- 
ally stable. 

Let number K be defined by (1.21) and vector H lie on one of the semiaxes of the 
body ellipsoid of inertia. Then the constant rotations of the body about the smallest 

(A > B > C) and the greatest (A < B < C) semiaxes of the body ellipsoid of 

Inertia are asymptotically stable for all perturbations from region (1.22). 
The constant rotation about the middle semiaxis of the body ellipsoid of inertia is 

asymptotically stable for all initial perturbations from region (1.22), if (A > B > C) 
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and the number R satisfies condition 

R>max {%(2B-CC), %(3A -5%)) 

If moment p is absent from formula (1.23), the unperturbed motion (1.17) is unstable, 

since the characteristic equation of the system of the first approximation equations (1.7) 
and (1.8) of perturbed motion (PO = q. = r. = 0) has in addition to the zero root at 
least one positive root 

A (5) = @i’ (5) = 0 
where 

rp (0) =: -91+JKf&a(jas (A - Bj2 + Br”Bs” (A - CJ2 -+ 

&“bs” (C - B)2j < 0, VK-+=)--,+m 

Below we assume that S is a fixed vector in the absolute system of coordinates 
oXY2, i,e, that O. = 0. 

2, Let us consider the motion of a solid body in a central Newtonian force field. 
Let the fixed point 0 of the body be fixed at distance Iz from the center of pull 0,. 
The axis 02 of the fixed system of coordinates oXYZ is directed outward from the 

center of pull and S, is the unit vector of that axis. The equations of motion of the 
body with allowance for moments of gravitational forces are of the form 

$0’+Ox630-~((Soxd)~)=M, sn*=s*xw, Y=S&fR f2.U 

where g, is the acceleration of gravity at distance R. 
Let us analyze the moment 

M=p”“3-((H,x&tQ- Y (Ho x @X5,) + ‘la gr$ u (2.2) 

The equations of motion (2.1) and (2.2) admit the particular solution 

o = AH,, H, = S, (2.3) 

Let us investigate the stability of solution (2.3). Retaining the notation used in (1.6) 

(PO = q. = r, = 0) we formulate the equations of perturbed motion 

lip,’ = h (@,r, - C&q& + (B - C)q,r, + y (C - m&6, + f2.*) 

y (Cl3J32 - m3,&l~ + 6 + p: (1 2 3) 

8,’ = p2rl - Bsql + L @8b - I%&> + r& - qlb (1 2 3) (2.5) 

Function 
2V = Ap,2 + Bqx2 + cr, 2 - 2% (Ap,61 + Bq,S, 4 CrJQ -+ (2.6) 

(a + vA)6,” + (a + vJm2 + (a-i- YC) b2 
where 

a > (ha - y> ml, ml = max {A, H, C) (2.7) 

is positive-definite with respect to variables appearing in it. 

Let us set P1~ _ 
- Y (B + c) (8&z - k&6,), 

c,(k - 83U 
~2” = p2 - v (A +(2.8) 

Iho = fJ.3 - v (A + R) (Bdl - BlQ 

where pi are functions defined in (1.11) @e = q,, = r. = 0). The derivative of func- 
tion (2.6) with respect to time derived on the basis ot equations of perturbed motions 
(2.4) and (2.5) with allowance for (1.11) and (2.8) are of the form (1.12). 
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We set A2 = v . Then for pr : A&, qr = Ah,, and rl = ?d, Eqs. (2.4) assume 
the form &a, - JV, = 0, IJ,& - IV, = 0, PA - Ps& = 0. 

Hence the manifold (1.14) in which T/” = 0 does not contain any other complete 

motions of the system, except the unperturbed motion (1.17), if the initial perturbations 
belong to region (I. 22). 

Theorem 2. If A2 = v , the initial perturbations belong to region (1.22) and the 
equalities (1.11) and (2.8) are satisfied, the solid body subjected to moment (2.2) either 

performs motion (2.3) or tends asymptotically to that motion and such motion is asymp- 
totically stable according to Liapunov. 

3, Let us consider a solid body with a fixed point on whose principal axes of inertia 
lie three axes of similar symmetric flywheels. Such system belongs to the class of gyro- 

stats, i. e. of system whose mass distribution remains unaltered during motion. The law 
of the moment of momentum yields the following equations: 

Cip’ + JIQ, + (C, - C2) qr + H,q - H,r = 0 (1 2 3), Hi = (3.1) 
J&i (i = 1, 2, 3) 

where Ci are the principal central moments of inertia of the gyrostat; Ji are the re- 

lated moments of inertia of flywheels ; SZi are the angular velocities of rrywheel rota- 
tion relative to the body, and p, p and r are projections of vector w of the body an- 

gular velocity on the zyz-axes. 

The equations of motion of the flywheels are 

J, (%’ + p’) = -M,, J, (Q,’ + q’) = --Mu, J, (Q,’ + r’) = -M, (3.2) 

where -M,, -M, and --M, represent the torques of motors driving the flywheels. 
Let 

A = C, - J,, 61 = C, - J,, C = C, - J, 

From Eqs. (3.1) and (3.2) we obtain 

Ap’ = (C,q + H2) r - (C,r + If,) 9 + &I, (1 2 3) (3.3) 

Equations (3.3) are taken as the basis of investigation, and moments M,, M, and 

M, are considered to be the control moments for the body. 
We introduce the new variables 

z1 = AP + J1 C4 + P), z2 = Bq t J2 (Q2 + a), z3 = Cr -I- (3.4) 

J, V&, + 4 
Then the combined Eqs. (3.2) and (3.3) assume the form 

Ap’ = z2r - z,q + M, (1 2 3) (3.5) 

21. = z2r - zsq (1 2 3) (3.6) 

Equations (3.6) admit the first integral 

zrs + zs2 + zs2 = const (3.7) 

Hence for zr2 (0) + 222 (0) f za2 (0) < 00 functions zi are always bounded. The 
existence of the integral (3.7) shows that it is impossible to simultaneously reduce all 
variables to zero. This conclusion shows the futility of attempts at stabilizing the gyro- 
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stat, and the necessity to confine the problem to that of stabilizing the rotation of the 
body itself [3]. 

Let us associate to (3.5) the Poisson’s kinematic equation 

alo = a2r - a,q (1 2 3) (3.8) 

where (ai (i = 1, 2, 3) are direction cosines of the fixed vector s with moving axes, 

Problem. Determine the control moment M which would make the body asymp- 

totically approach such position that vector H attached to the body would assume the 

direction of the fixed vector s. Let us consider moment 

M=p-- h (z x H,) + Vz gradat U (3.9) 

where z is a’ vector with components zr, zs and zs. 

Equations (3.5), (3.9) and (3.8) admit the particular solution 

CO=?&, H, =S, (3.10) 

for any Zi (i = 1, 2, 3), that satisfy conditions (3.6) and (3.7). 

For o = AH,, Eqs. (3.6) assume the form 

21. = i (83% - 82%) (1 2 3) (3.11) 

Equations (3.11) admit two first integrals 

21~ f ~2’ -I- zs2 = h12 = const, /3rzr + B2z2 + flszs = h = const (3.12) 

The general solution of Eqs- (3.11) is of the form 

z1 = a, cos ht + b&n ht + hfl, (3.13) 

22 = & [(P2b1- M324) cos At - &I + PAW sin AtI + hP2 

22 = - &? tw1+ B1Psadcos~t - (haI - PMdsin w +I@, 

a12 + b,2 = (1 - 

Let the initial conditions 

B12) (h12 - ha), h > h 

zi (0) (i = 1, 2, 3) for system (3.11) be such that 

h = h, (3.14) 

Then (al = b, = 0) the solution of system (3.11) assumes the form 

21 = %, 22 = Q,, 2s = hBs (3.15) 

and moment (3.9) becomes 
M = ,w + II2 gradaiU (3.16) 

Let us restrict OUT analysis to the case of (3.14), (3.15). Using for the variation of 
variables the notation 

p1 = p - 3LfJ1, q1 = q - ?bf12, rl = r - 3Lp3, ai - pi = ai, 

Zi - hf3i = t~i (i = 1, 2, 3) 

we formulate the equations of perturbed motion 
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6,’ == f&r1 - B3ql -I- a GV& - B&&) i hr, - Gh (1 2 3) 
Q’ = h (82r.1 - bh) + X (f&v2 - 82r13) + 7125 - r341 (1 2 3) 

We denote by x the vector with components {pr, ql, rlr 6,, 6,, 8,, qI, Q, Q) 
and by y the vector with components (pl, ql, r,, 6,, &, S,} and examine function 

2V = ApI + Bq12 -/- Cr12 - 2h. (AZ& + Bq& + Cr&J + (3.18) 

a (612 + aa2 + 6s2) + W, - Q)2 + (h6, - QJs + (h6, - rsJ2 

Function (3.18) is &-positive-definite in region [4] 

o<~x~-=L+* (3.19) 

if a > h2m,, where m, = max {A, B, 6’). Furthermore, for V (x) -+ 00 ,I y 1 + 
00. The total derivative of function (3.18) with respect to time, derived on the basis 

of equations of perturbed motion (3.17) is of the form 

V = --h I@, - ?GQ2 + (qr - NJ2 + (rr - &)*I (3.20) 

obtained by setting in Eqs. (3.17) a = hh and defining functions pi (i = 1, 2, 3) 
by the equalities 

p1 = -k~, + J.. Ws8r - CB2rJ + (B - 0 qlrl - a (8s~ - (3.2 

Ps%J - (WI - WA) 

pz = -hq, + a W&r1 - A&P,) + W - A) plrl - A (h - 
83%) - bP1 - 711rd 

p3 - -hr, + h. (A B2pl - WAq,) + (-4 - B) plql - 1 (Bs% - 

fh2>:-- (WI - %Pd 

1) 

<et us consider the set {X : y = 0). It constitutes the aggregate of all solutions of 
the linear equations 

71; = h fBs% - BGls) f* 2 3) 
i. e. it is invariant. The manifold E of points at which (3.20) becomes zero is of the 
form pr =: he,, q1 = ?&, rl = h6, and ?li are arbitrary (i = 1, 2, 3). 

For p1 =: Aa, = Al,, q1 = a(&_= Ai,, r1 = J.6, = Al, the first six equations 

(3.17) are identically satistied and the remaining three assume the form 

. 
YI = h Rfj3 + 131 112 - (02 i- E2fqJ + 1Lh i&j13 - p&2) (2 2 3) (3.22) 

Equations (3.22) admit the first integral 

rll Ml -I- 4) + rl2 (I% + 4) + q3 (83 + 13) =I; rz. = const (3.23) 

The general solution of Eqs. (3.22) is of the form 

qi = (F: (8) i- n (pi i li) + hJi (i = 1, 2, 3) (3.24) 

where 9pi (t) are periodic functions of period, 2n, cpi (t) + n (fli f &) is the gene- 
ral solution of the homogeneous system, and hi, is the particular solution of the non- 

homogeneous system (3.22). 
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The substitution of solution (3.24) into the integral (3.23) with allowance for the re- 
lationship 

El2 + 122 + kc2 + 2 (814 + Bzl, + fu3) = 0 

yields 112 + 1,s + t32 = 0, i.e. ill = 0. Thus, we obtain that the set E\{x : y = 
O} does not contain complete motions of system (3.1’7) and, consequently, for h > km, 
(m, = max {A, B, C}) the unperturbed motion x = 0 is asymptotically y-stable as 
a whole [5]. 

Theorem 3. If the initial conditions zi (0) (i = 1, 2, 3) for the linear system 
(3.11) are selected in accordance with (3.12) and (3.14), and the conditions h -2 Am, 
are satisfied, the solid body subjected to moment. 

M = p + Ii, grad,, U 

where IA is determined by (3.21), either performs the motion 

o = kHo, Ho = s, 

or asymptotically tends to such motion, and the motion (3.24) is asymptotically stable 
according to Liapunov. 

4, Let the gyrostat move about the center of mass in the presence of forces of gravity 
with the fixed point 0 of the gyrostat Xocated at distance K from the center of pull 0,. 

Let us investigate moment 

MS@-- y (HO x @SO) + i/s graQ, U (4.1) 

where 0 is the tensor of the girostat inertia about the fixed point 0. 
If condition (3.14) is satisfied, the equations of perturbed motion with allowance for 

moments of gravitational forces are of the form 

Ap; = h (per, - f&> + h (fblz - b&i) + %?‘I - %ql + (4.2) 

y (C, - C,) 6,6s + v (C&&s - CsB&M + 6 + Pro (1 2 3) 

8,' = p2rx - /.33q1 + q3362 - B2S3> i- 625 - &!iI 0 2 3) 

d = h (B2rl - fJ&J Sh @$l2 - B2rls) + CWI - rl3Qd (1 2 3) 

Function 
2V = Ap,Z + Bq,2 + cr,2 - 2% (A@, + Bqle2 4 Cc&l 

(a + vc,) e12 + (a + vc, )6s2 + (a + vc,) aa2 + (h% 
r1d2 + (h& - ~2)~ + (4 - '13)~ 

for 

is a y-positive-definite function. Let us set 

+ (4.3) 
- 

(4.4) 

(4.5) 

where pi (i = 1, 2, 3) are functions defined by (3.21). The total derivative of func- 
tion (4.3) with respect to time, based on equations of perturbed motion (4.2) with allow- 
ance for equalities (3.21) and (4.5), is of the form 
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Theset (X:y =o) is invariant and the set E \ (X : y = 0) does not contain 
complete trajectories of system (4.2) (the proof of this is similar to [a]). Consequently, 

if conditions (3.14) and (4.4) are satisfied, the unperturbed motion x = 0 is asympto- 

tically y-stable as a whole E5). 
Theorem 4. If the initial conditions zi (0) (i c: 1, 2, 3) of the linear system 

(3-11) are selected in accordance with (3.12) and f3.14),and condition (4.4) is satisfied, 

the solid body sunjected to moment (4. l), where @ is determined by equalities (3.21) 
and (4,5) in the presence of gravitational forces either performs the motion 

o = hH,, H, -= so (4.6) 

or asymptotically tends to such motion. Motion (4.6) is asymptotically stable according 

to Liapunov. 
In concluding the author thanks V. V. Rumiantsev for stating the problem and constant 

interest in this work. 
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Existence of a new set of periodic solutions of the problem of a heavy solid body 
motion about a fixed point is proved by the small parameter method of Poincari, 
It is assumed that the body does not greatly differ from a body with a dynamic sym- 
metry axis, and that the constant of integration of the moment of mom~n~rn is 
fairly small, 

Let us consider the motion of a heavy solid body about a fixed point, The equation of 
motion of this problem can be reduced to a fourth order system describing the motion 
of a fictitious material point in a plane, by using the cyclic integral dT / &#’ = f. where 


